1

Система линейных алгебраических уравнений (СЛАУ).

В общем виде СЛАУ можно записать в следующем виде

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1m}x_m = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2m}x_m = b_2$
 \vdots
 $a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nm}x_m = b_n$

Совокупность коэффициентов системы можно представить в виде матрицы:

$$\stackrel{=}{\mathbf{A}} = [\mathbf{A}] = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & \cdot & \cdot & a_{1m} \\
a_{21} & a_{22} & a_{23} & \cdot & \cdot & a_{2m} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
a_{n1} & a_{n2} & a_{n3} & \cdot & \cdot & a_{nm}
\end{bmatrix}, i=1,2,3,...,n; j=1,2,3,...,m$$

Совокупность неизвестных системы – в виде вектора столбца:

$$\overrightarrow{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_m \end{bmatrix}, j=1,2,3,\dots,m$$

Совокупность свободных членов – в виде и вектора столбца:

$$\overrightarrow{b} = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{bmatrix}, i=1,2,3,\dots,n$$

Используя выше приведенные определения, запишем СЛАУ в матричном виде:

$$\overrightarrow{A} x = \overrightarrow{b}$$

Решить СЛАУ значить найти такие значения вектора

$$\overrightarrow{\mathbf{x}}^* = \begin{bmatrix} \mathbf{x}^* \\ \mathbf{x}^* \\ \mathbf{x}^* \\ \mathbf{x}^* \\ \mathbf{x}^* \\ \mathbf{m} \end{bmatrix},$$

подстановка которого в систему, обращает каждое уравнение этой системы в тождество.

Классификация СЛАУ

- 1. Если число уравнений больше чем число неизвестных, т.е. n>m, то СЛАУ называется переобусловленой
- 2. Если число уравнений меньше чем число неизвестных, т.е. n<m, то СЛАУ называется недообусловленой
- 3. Если число уравнений равно числу неизвестных, т.е. n=m, то СЛАУ называется нормальной

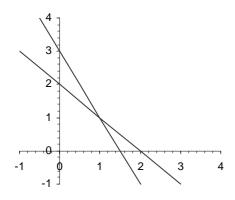
- 4. Если вектор свободных членов равен нулю $\dot{b} = 0$, то СЛАУ называется однородной
- 5. Если вектор свободных членов не равен нулю $\vec{b} \neq \overset{\rightarrow}{0}$, то СЛАУ называется неоднородной
- 6. Если система, имеет хотя бы одно решение, она называется совместной. Система, не имеющая решений, называется несовместной.
- 7. Совместная система, имеющая единственное решение, называется определенной, а имеющая бесчисленное множество решений, называется неопределенной.

Очевидно, что однородная система всегда совместна, так как имеет хотя бы однорошение $\stackrel{\rightarrow}{x} \stackrel{\rightarrow}{=} 0$, которое называется тривиальным.

примеры графической интерпретации:

 $2x_1 + x_2 = 3$ $x_2 = 3$ -2 x_1 система совместная и определенная.

$$2x_1 + 2x_2 = 4$$
 $x_2 = 2 - x_1$



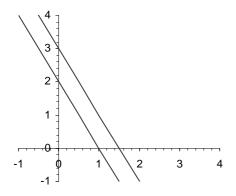
 $2x_1 + x_2 = 3$ $x_2 = 3 - 2x_1$ система совместная и неопределенная.

$$4x_1 + 2x_2 = 6$$
 $x_2 = 3 - 2x_1$



 $2x_1 + x_2 = 3$ $x_2 = 3 - 2x_1$ система несовместная.

$$4x_1 + 2x_2 = 4$$
 $x_2 = 2 - 2x_1$



Методы решения СЛАУ

Все методы решения систем линейных алгебраических уравнений (СЛАУ) можно разделить на две группы: точные и итерационные.

Точные методы позволяют получить решение путем выполнения определённого и точного количества арифметических операций. При этом погрешность решения определяется лишь точностью представления исходных данных и точностью вычислительных операций.

Итерационные методы дают некоторую последовательность приближений к решению. Пределом этой последовательности является решение системы уравнений. Решение, возможно, определить лишь с некоторой, как правило, заданной степенью точности є. Количество итераций для достижения требуемой точности решения определяется величиной є, выбором начального приближения и видом системы уравнений.

Точные методы

Метод обратной матрицы

4.1. Метод Гаусса

Требуется решить систему п линейных уравнений с п неизвестными.

$$\stackrel{=}{A} \stackrel{\rightarrow}{x} \stackrel{\rightarrow}{=} \stackrel{\rightarrow}{b}$$

Метод Гаусса включает два этапа.

Первый этап (прямой ход) заключается в последовательном исключении неизвестных из системы уравнений и состоит из n-1 шага. На первом шаге с помощью первого уравнения исключается x_1 из всех последующих уравнений начиная со второго, на втором шаге с помощью второго уравнения исключается x_2 из последующих уравнений начиная с третьего и т.д. Последним исключается x_{n-1} из последнего n-го уравнения так, что последнее уравнение будет содержать только одно неизвестное x_n . Такое последовательное исключение неизвестных равносильно приведению матрицы коэффициентов к треугольному виду. Строка, с помощью которой исключаются неизвестные, называется ведущей строкой, а диагональный элемент в этой строке — ведущим элементом.

$$\begin{bmatrix} a_{11} \cdot x_1 & + & a_{12} \cdot x_2 & + & a_{13} \cdot x_3 & + & \dots & + & a_{1n} \cdot x_n & = b_1 \\ a_{21} \cdot x_1 & + & a_{22} \cdot x_2 & + & a_{23} \cdot x_3 & + & \dots & + & a_{2n} \cdot x_n & = b_2 \\ a_{31} \cdot x_1 & + & a_{32} \cdot x_2 & + & a_{33} \cdot x_3 & + & \dots & + & a_{3n} \cdot x_n & = b_3 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ a_{n1} \cdot x_1 & + & a_{n2} \cdot x_2 & + & a_{n3} \cdot x_3 & + & \dots & + & a_{nn} \cdot x_n & = b_n \end{bmatrix}$$

Второй этап (обратный ход) заключается в последовательном вычислении искомых неизвестных и состоит из n шагов. Решая последнее уравнение, находим неизвестное x_n . Далее используя это значение из предыдущего уравнения вычисляем неизвестное x_{n-1} и т.д. Последним найдем неизвестное x_1 из первого уравнения.

Матрица, содержащая помимо коэффициентов при неизвестных A столбец свободных членов b , называется расширенной

$$\stackrel{=}{\mathbf{C}} = \left[\stackrel{=}{\mathbf{A}} \middle| \stackrel{\rightarrow}{\mathbf{b}} \right].$$

Алгоритм.

1. Строим расширенную матрицу \bar{C} размерностью n на n+1, приписав, справа к матрицы \bar{A} вектор \bar{b} . $\bar{C} = \begin{bmatrix} = & | \rightarrow \\ A & | \vec{b} \end{bmatrix}$ т.е. $c_{i,j} = a_{i,j}$, $c_{i,n+1} = b_i$, где $i = 1,2,3,\ldots,n$ $j = 1,2,3,\ldots,n$

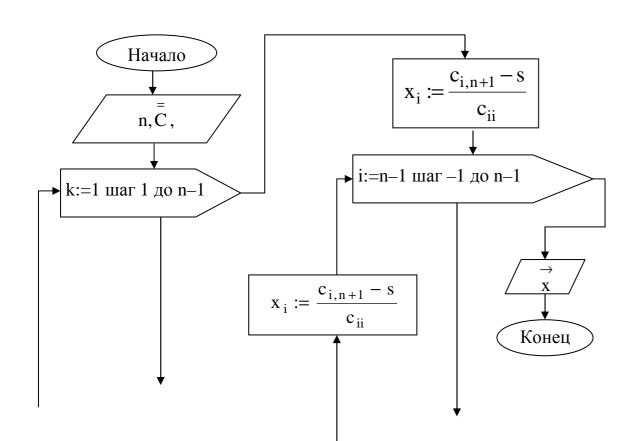
$$\stackrel{=}{C} = \left[\stackrel{=}{A} \middle| \stackrel{\rightarrow}{b} \right] = \left[\begin{matrix} c_{11} & c_{12} & c_{13} & \dots & c_{1n} & c_{1,n+1} \\ c_{21} & c_{22} & c_{23} & \dots & c_{2n} & c_{2,n+1} \\ c_{31} & c_{32} & c_{33} & \dots & c_{3n} & c_{3,n+1} \\ \dots & \dots & \dots & \dots & \dots \\ c_{n1} & c_{n2} & c_{n3} & \dots & c_{nn} & c_{n,n+1} \end{matrix} \right].$$
 Задаем номер ведущей строки $k=1$

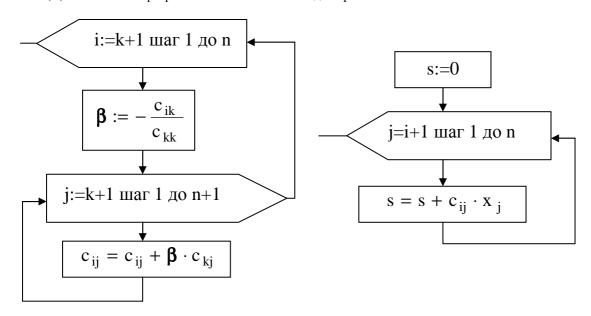
- 2. Преобразуем все строки, расположенные ниже **k**-ой так, чтобы элементы $\mathbf{c_{ik}}$ =**0**, для этого вычисляем множитель $\boldsymbol{\beta}$ =- $\mathbf{c_{i,k}}/\mathbf{c_{k,k}}$ и каждую **i**-ую строку заменяем суммой **i**-ой и **k**-ой умноженной на $\boldsymbol{\beta}$, т.е. $\mathbf{c_{i,j}}$ = $\mathbf{c_{i,j}}$ + $\boldsymbol{\beta}$ * $\mathbf{c_{k,j}}$ где \mathbf{i} = \mathbf{k} +1, \mathbf{k} +2, \mathbf{k} +3,..., \mathbf{n} и \mathbf{j} = \mathbf{k} , \mathbf{k} +1, \mathbf{k} +2,..., \mathbf{n} +1
- 3. Проверяем k = n-1 если нет, то выбираем новую ведущую строку k=k+1 и переходим на пункт 2, иначе выполняем пункт 4.
- 4. Обратный ход. Из последнего **n**-ого уравнения определяем последнее **n**-ое неизвестное. $\mathbf{x_n} = \mathbf{c_{n,n+1}}/\mathbf{c_{n,n}}$

Последовательно, из предыдущих уравнений начиная с i=n-1, вычисляем соответствующие неизвестные x_i . Последним, определяется первое неизвестное из пер-

вого уравнение.
$$x_i = \frac{(c_{i,n-1} - \sum\limits_{j=i+1}^n c_{i,j} * x_j)}{c_{i,i}}$$
 $i=n-1,\,n-2,\,n-3,\ldots,1$

Блок-схема метода Гаусса





Пример. Решить СЛАУ методом Гаусса.

$$\begin{bmatrix} -7.000 & -2.000 & 2.000 \\ 1.000 & -7.000 & -3.000 \\ -3.000 & -1.000 & -5.000 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -7.000 \\ -7.000 \\ -5.000 \end{bmatrix}$$

Первый этап. Строим расширенную матрицу и преобразуем её к ступенчатому виду.

$$\begin{bmatrix} -7.000 & -2.000 & 2.000 | -7.000 \\ 1.000 & -7.000 & -3.000 | -7.000 \\ -3.000 & -1.000 & -5.000 | -5.000 \end{bmatrix}$$

$$\begin{bmatrix} -7.000 & -2.000 & 2.000 | -7.000 \\ 0.000 & -7.286 & -2.714 | -8.000 \\ -3.000 & -1.000 & -5.000 | -5.000 \end{bmatrix}$$

$$\begin{bmatrix} -7.000 & -2.000 & 2.000 | -7.000 \\ 0.000 & -7.286 & -2.714 | -8.000 \\ 0.000 & -7.286 & -2.714 | -8.000 \\ 0.000 & -0.143 & -5.857 | -2.000 \end{bmatrix}$$

$$\begin{bmatrix} -7.000 & -2.000 & 2.000 | -7.000 \\ 0.000 & -7.286 & -2.714 | -8.000 \\ 0.000 & 0.000 & -5.804 | -1.843 \end{bmatrix}$$

Второй этап. Вычисляем неизвестные.

$$x_{3} = \frac{-1.843}{-5.804} = 0.318$$

$$x_{2} = \frac{(-8 - (-2.714 \cdot 0.318))}{-7.286} = 0.980$$

$$x_{1} = \frac{(-7 - (-2 \cdot 0.980 + 2 \cdot 0.318))}{-7} = 0.811$$
other $\overrightarrow{x} = \begin{bmatrix} 0.811 \\ 0.980 \\ 0.318 \end{bmatrix}$

Модификации метода Гаусса

Для уменьшения погрешности вычислений при реализации алгоритма метода Гаусса используют его модификации, такие как метод Гаусса с частичным или полным выбором «ведущего» элемента. В модификации с частичным выбором на k-м шаге прямого хода в качестве «ведущего» выбирается наибольший по модулю элемент из неприведённой части k-го столбца матрицы, т.е.

$$c_{kk} = \max_{i} |c_{ik}|, i = k, k+1, k+2,...,n$$

Строка, содержащая этот элемент, переставляется с k-й строкой расширенной матрицы.

При **полном** выборе в качестве «ведущего» элемента выбирается максимальный по модулю элемент из всей неприведённой части матрицы коэффициентов системы:

$$c_{kk} = \max_{i,j} |c_{ij}|, i, j = k, k+1, k+2,..., n$$

Для этого осуществляется необходимая перестановка как строк, так и столбцов в расширенной матрице коэффициентов. При этом следует помнить, что перестановка столбцов равносильна переименованию неизвестных.

Пример. Решить СЛАУ методом Гаусса с частичным выбором.

$$\begin{bmatrix} 1.000 & 6.000 & -1.000 \\ 2.000 & 1.000 & 5.000 \\ 5.000 & -1.000 & 2.000 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0.000 \\ 10.000 \\ -10.000 \end{bmatrix}$$

Первый этап. Строим расширенную матрицу и преобразуем её к ступенчатому виду.

$$\begin{bmatrix} 1 & 6 & -1 & 0 \\ 2 & 1 & 5 & 10 \\ 5 & -1 & 2 & -10 \end{bmatrix}$$

На первом шаге преобразования к=1 наибольший по абсолютной величине элемент в первом столбце (5) расположен в третьей строке матрицы, поэтому меняем первую и третью строки и производим необходимые преобразования.

$$\begin{bmatrix} 5 & -1 & 2 & | & -10 \\ 2 & 1 & 5 & | & 10 \\ 1 & 6 & -1 & | & 0 \end{bmatrix} \qquad \begin{bmatrix} 5 & -1 & 2 & | & -10 \\ 0 & 1.4 & 4.2 & | & 14 \\ 0 & 6.2 & -1.4 & | & 2 \end{bmatrix}$$

На втором шаге преобразования к=2 наибольший по абсолютной величине элемент во втором столбце (6.2) расположен в третьей строке матрицы, поэтому меняем вторую и третью строки и производим необходимые преобразования.

$$\begin{bmatrix} 5 & -1 & 2 & | & -10 \\ 0 & 6.2 & -1.4 & 2 \\ 0 & 1.4 & 4.2 & 14 \end{bmatrix} \quad \begin{bmatrix} 5 & -1 & 2 & | & -10 \\ 0 & 6.2 & | & -1.4 & 2 \\ 0 & 0 & 4.516 & | & 13.548 \end{bmatrix}$$

Второй этап. Вычисляем неизвестные.

$$x_3 = \frac{13.548}{4.516} = 3$$

$$x_2 = \frac{(2+1.4\cdot3)}{6.2} = \frac{6.2}{6.2} = 1$$

$$x_1 = \frac{-10 - ((-1)\cdot1 + 2\cdot3)}{5} = -3$$

OTBET
$$\vec{x} = \begin{bmatrix} -3\\1\\3 \end{bmatrix}$$

Обусловленность систем линейных алгебраических уравнений.

Если система плохо обусловлена, то это значит, что погрешности коэффициентов матрицы и свободных членов или погрешность округления при расчетах могут сильно исказить решение.

Исходную систему уравнений

$$A \cdot x = b$$

с учетом погрешности в векторе \vec{b} можно записать в виде:

$$\stackrel{=}{A} \stackrel{\rightarrow}{x} \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{+} \stackrel{\rightarrow}{\Delta} \stackrel{\rightarrow}{b}$$
, где $\stackrel{\rightarrow}{x} \stackrel{=}{x} \stackrel{\rightarrow}{+} \stackrel{\rightarrow}{\Delta} \stackrel{\rightarrow}{x}$.

Получаемое решение, отличающееся от точного \vec{x} на величину ошибки $\overset{\rightarrow}{\Delta x}$. Заменив, \vec{x} получим

$$\overrightarrow{A}\cdot(x+\Delta x)=\overrightarrow{b}+\Delta \overrightarrow{b}$$
 или $\overrightarrow{A}\cdot x-\overrightarrow{b}+\overrightarrow{A}\cdot\Delta x=\Delta \overrightarrow{b}$ и тогда

 $A \cdot \Delta \stackrel{\cdot}{x} = \Delta \stackrel{\cdot}{b}$ отсюда можно выразить абсолютную погрешность решения

норма этой погрешности определяется соотношением:

$$\overset{=}{\longrightarrow} \overset{=^{-1}}{\longrightarrow} \overset{=}{\longrightarrow} \overset{=^{-1}}{\longrightarrow} \overset{=}{\longrightarrow} \\ \|\Delta x\| = \|A \cdot \Delta b\| \text{ или } \|\Delta x\| \leq \|A\| \cdot \|\Delta b\|$$

Определим относительную погрешность

$$\frac{ \left\| \begin{array}{c|c} \rightarrow & =^{-1} & \rightarrow \\ \left\| \begin{array}{c|c} \Delta x \end{array} \right\| \leq \frac{\left\| \begin{array}{c|c} A & \left\| \cdot \right\| \Delta b \end{array} \right\|}{\rightarrow} \\ \left\| \begin{array}{c|c} x \end{array} \right\| \end{array}$$

из исходной системы $\stackrel{=}{A}\cdot \stackrel{\rightarrow}{x}=\stackrel{\rightarrow}{b}$ получим $\parallel A\parallel\cdot\parallel x\parallel\geq\parallel b\parallel$

далее определим $\frac{1}{\|x\|} \le \frac{\|A\|}{\|b\|}$ и подставим в определение относительной погрешности получим:

$$\frac{\parallel \Delta \vec{x} \parallel}{\underset{\rightarrow}{\rightarrow}} \leq \parallel \overset{=}{A} \parallel \cdot \parallel \overset{=}{A} \parallel \cdot \parallel \Delta \vec{b} \parallel$$

Вводим понятие числа обусловленности:

$$K_{oб.} = Cond(\stackrel{=}{A}) = \parallel \stackrel{=}{A} \parallel \cdot \parallel \stackrel{=}{A} \parallel$$
и тогда $\frac{\parallel \stackrel{\rightarrow}{\Delta x} \parallel}{\stackrel{\rightarrow}{\to}} \leq K_{oб} \cdot \frac{\parallel \stackrel{\rightarrow}{\Delta b} \parallel}{\stackrel{\rightarrow}{\to}}.$

Следует иметь ввиду, что мы определяем предельную относительную погрешность, реальная может быть и меньше.

Пример.

Определить обусловленность систем уравнений:

1)
$$-x_1 + 2x_2 = 1$$
 2) $-x_1 + 2x_2 = 1$ $-10x_1 + 21x_2 = 11$, при $\Delta \overrightarrow{b} = \begin{bmatrix} 0.1 \\ 0.0 \end{bmatrix}$, $\|\Delta \overrightarrow{b}\| = 0.1$

Без учета погрешности точное решение одно и тоже для обеих систем:

$$\vec{\mathbf{x}} = \begin{bmatrix} 1.00 \\ 1.00 \end{bmatrix}$$

для 1-ой системы
$$A = \begin{bmatrix} -1 & 2 \\ 2 & -1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, A^{-1} = \begin{bmatrix} 0.33 & 0.67 \\ 0.67 & 0.33 \end{bmatrix}$$

$$||A|| = \sqrt{(-1)^2 + 2^2 + 2^2 + (-1)^2} = 3.16, \quad ||A^{-1}|| = 1.05 \quad \text{cond} = 3.33$$

$$||\overrightarrow{b}|| = \sqrt{1^2 + 1^2} = 1.41$$

$$||\delta \vec{b}|| = \frac{0.1}{1.41} = 0.071$$

$$\parallel \delta \stackrel{\rightarrow}{x} \parallel = 3.33 * 0.071 = 0.24$$

для 2-ой системы
$$A = \begin{bmatrix} -1 & 2 \\ -10 & 21 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 11 \end{bmatrix}, A = \begin{bmatrix} -21 & 2 \\ -10 & 1 \end{bmatrix}$$

$$\| \overrightarrow{A} \| = \sqrt{(-1)^2 + 2^2 + (-10)^2 + 21^2} = 23.37, \quad \| \overrightarrow{A}^{-1} \| = 23.37 \quad \text{cond} = 546.0$$

$$\| \overrightarrow{b} \| = \sqrt{1^2 + 11^2} = 11.05$$

$$\|\mathbf{\delta} \stackrel{\rightarrow}{\mathbf{b}}\| = \frac{0.1}{11.05} = 0.0091$$

$$\|\mathbf{\delta} \stackrel{\rightarrow}{x}\| = 546 \cdot 0.0091 = 4.94$$

Метод простых итераций

Алгоритм метода состоит из трёх этапов.

Первый этап. Приведение СЛАУ к итерационному виду, для этого разрешим каждое уравнение относительно соответствующего неизвестного:

$$a_{11}x_1 + \ a_{12}x_2 + \dots + a_{1n}x_n = \ b_1 \\ a_{21}x_1 + \ a_{22}x_2 + \dots + a_{2n}x_n = \ b_2 \\ \vdots \\ a_{n1}x_1 + \ a_{n2}x_2 + \dots + a_{nn}x_n = \ b_n$$

$$x_1 = \ d_1 - (0x_1 + c_{12}x_2 + c_{13}x_3 + \dots + c_{1n}x_n) \\ x_2 = \ d_2 - (c_{21}x_1 + 0x_2 + c_{23}x_3 + \dots + c_{2n}x_n) \\ \vdots \\ x_n = \ d_n - (c_{n1}x_1 + c_{n2}x_2 + c_{n3}x_3 + \dots + 0x_n),$$

$$r_1 = x_1 + x_1 + x_2 + x_2 + x_2 + x_3 + x_3 + x_4 + x_4 + x_4 + x_5 + x_5$$

Тогда итерационную формулу запишем в виде:

$$\overrightarrow{x} = \overrightarrow{d} - \overrightarrow{C} \cdot \overrightarrow{x}$$
; $k = 1, 2, 3, \dots$

где вектор d — приведенный столбец свободных членов, атрица C — приведенная матрица коэффициентов.

Второй этап. Проверяем условие сходимости

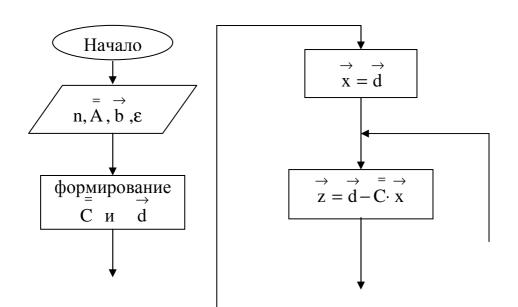
если условие не выполняется, то преобразуем исходную систему и выполняем 1-й этап.

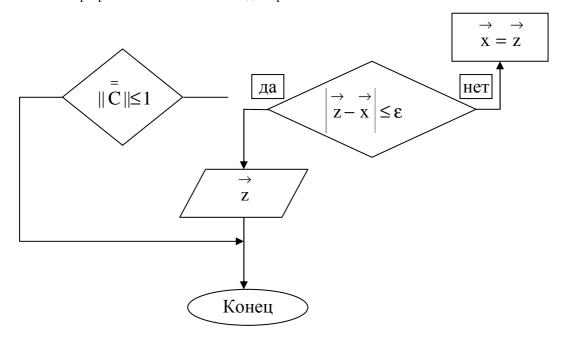
Третий этап. Осуществляем уточнение решения по полученной итерационной формуле. За начальное приближение принимается вектор x = d. Условием окончания итерационного процесса является выполнение условия

$$||\stackrel{\rightarrow}{x}^{k}\stackrel{\rightarrow}{\rightarrow}^{k-1}||\leq \epsilon\,,$$

где величина ϵ определяет точность получаемого решения, а x и x — смежные приближения к решению.

Блок-схема метода простых итераций





Пример. Решить СЛАУ методом простых итераций ε =0.01.

$$\begin{bmatrix} -7.000 & -2.000 & 2.000 \\ 1.000 & -7.000 & -3.000 \\ -3.000 & -1.000 & -5.000 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -7.000 \\ -7.000 \\ -5.000 \end{bmatrix}$$

Преобразуем исходную систему к итерационному виду.

Результаты уточнения решения СЛАУ методом простых итераций

k	$\stackrel{ ightarrow}{d}$		= C	\rightarrow^{k-1} X	\rightarrow^k	$\Delta \overset{ ightarrow}{x}$	$\left\ \Delta \stackrel{\rightarrow}{\mathbf{x}} \right\ $
1	1.000 1.000 1.000	-	0.000 0.286 -0.286 -0.143 0.000 0.429 0.600 0.200 0.000	1.000 1.000 = 1.000	1.000 0.714 0.200	0.000 -0.286 -0.800	0.849
	1.000 1.000 1.000		0.000 0.286 -0.286 -0.143 0.000 0.429 0.600 0.200 0.000		0.853 1.057 0.257	-0.147 0.343 0.057	0.377

117	февраль 2010	т. калинкин владимир тик	Ona	CDIT I			
	1.000	0.000 0.286 -0.286		0.853	0.771	-0.082	
3	1.000 –	-0.143 0.000 0.429		1.057 =	1.012	-0.045	0.095
	1.000	0.600 0.200 0.000		0.257	0.277	0.020	
4	1.000	0.000 0.286 -0.286		0.771	0.790	0.019	
	1.000 -	-0.143 0.000 0.429	•	1.012 =	0.992	-0.020	0.064
	1.000	0.600 0.200 0.000		0.277	0.335	0.058	
	1.000	0.000 0.286 -0.286		0.790	0.812	0.022	
5	1.000 -	-0.143 0.000 0.429	•	0.992 =	0.969	-0.022	0.032
	1.000	0.600 0.200 0.000		0.335	0.328	-0.007	
6	1.000	$0.000 \ 0.286 - 0.286$		0.812	0,817	0,004	
	1.000 -	-0.143 0.000 0.429	•	0.969 =	0,976	0,006	0,012
	1.000	0.600 0.200 0.000		0.328	0,319	-0,009	
7	1.000	$0.000 \ 0.286 - 0.286$		0,817	0,810	-0,002	
	1.000 -	-0.143 0.000 0.429	•	0,976 =	0,981	0,001	0,003
	1.000	0.600 0.200 0.000		0,319	0,317	0,002	